

## INTRODUCTION TO REMOTE SENSING FOR CONSERVATION MANAGEMENT

**COURSE DATES: EVERY TUESDAY, MAY 5 – JUNE 2** 

TIME: 12:00 - 1:00 PM EDT (GMT-04:00)

OR

10:00 - 11:00 PM EDT

Applied Remote Sensing Training

#### **Course Structure**



- One lecture per week every Tuesday May 5 to June 2
  - □ 12:00 1:00 PM EDT (GMT-04:00) (Session 1)
  - 10:00 11:00 PM EDT (Session 2)
- Webinar recordings, PowerPoint presentations, and homework assignments can be found after each session at:
   <a href="https://arset.gsfc.nasa.gov/ecoforecasting/webinars/introduction-remote-sensing-conservation-management">https://arset.gsfc.nasa.gov/ecoforecasting/webinars/introduction-remote-sensing-conservation-management</a>
- Certificate of Completion
  - Attend 4 out of 5 webinars
  - Assignment 1 and 2 access from the ARSET Conservation Management webinar website (above)
  - You will receive certificates approximately 1 month after the completion of the course from: marines.martins@ssaihq.com
- Q/A: 15 minutes following each lecture and/or by email (<u>cynthia.l.schmidt@nasa.gov</u>)



### **ARSET Conservation Management**



https://arset.gsfc.nasa.gov/ecoforecasting/webinars/introduction-remote-sensing-conservation-management



### **Your Course Instructors**

- Cindy Schmidt (ARSET): <a href="mailto:cynthia.l.schmidt@nasa.gov">cynthia.l.schmidt@nasa.gov</a>
- Amber Kuss (ARSET): <a href="mailto:amberjean.m.kuss@nasa.gov">amberjean.m.kuss@nasa.gov</a>
- Guest Speakers:
  - Walter Jetz Yale University (week 3)
  - Jeff Cavner –University of Kansas (week 4)
  - Karyn Tabor Conservation International (week 5)

General inquiries about ARSET: Ana Prados (ARSET) aprados@umbc.edu

## **Course Outline**



#### Week 1



Overview of satellite remote sensing

#### Week 2



Platforms and sensors for conservation

#### Week 3



**Habitat monitoring** 

#### Week 4



**Animal movement** 

#### Week 5



**Near-real time data** 

## Week 2 Agenda



- Brief review of last week
- Satellite data processing levels
- Overview of satellite sensors for conservation applications
- Live Demos
  - MODIS MRT Web and LandsatLook Viewer

## Review of Week 1

### **Conservation and Remote Sensing**

- Conservation Biology paper (Rose, et al 2014) that identified ten topics
  - Species distributions and abundances
  - Species movements and life stages
  - Ecosystem processes
  - Climate change
  - Rapid response
  - Protected areas
  - Ecosystem services
  - Conservation effectiveness
  - Agriculture and aquacultural expansions and changes in land use land cover (LULC)
  - Degradation and disturbance regimes





### **Fundamentals of Remote Sensing**

NASA

- Remote Sensing
  - Electromagnetic spectrum
  - Spectral signatures
  - Advantages/Disadvantages
- Characteristics of satellite sensors
  - Passive vs. active
- NASA satellites for conservation management





## Satellite Data Processing Levels

# Levels of Data Processing and Spatial Resolution



- Level 1 and Level 2 data products have the highest spatial and temporal resolution.
- Level 3 and 4 products are derived products with equal or lower spatial and temporal resolution than Level 2 products.









## **Data Processing Levels**



L0: Raw instrument data

L1: Geolocated and calibrated

L2: Products derived from L1B

L3: Gridded and quality controlled

L4: Model output: derived variables

Harder to Use

Easier to Use





| Landsat                                   | MODIS                                                                             |
|-------------------------------------------|-----------------------------------------------------------------------------------|
| Level 1T – Standard Terrain Corrected     | Level 2 – derived geophysical variables                                           |
| Level 1Gt – Systematic Terrain Correction | <b>Level 2G</b> – level 2 data mapped on a uniform space-time grid scale          |
| Level 1G – Systematic Correction          | <b>Level 3</b> – gridded variables in derived spatial and/or temporal resolutions |
|                                           | Level 4 – model output or results from analyses of lower level data               |

Landsat: Use level 1 imagery that includes spectral characteristics

MODIS: Use level 2, 3, or 4 products

For more information on Landsat data processing levels: http://landsat.usgs.gov/Landsat Processing details.php

For more information on MODIS Land Products processing levels: <a href="http://lpdaac.usgs.gov/products/modis\_products\_table/modis\_overview">http://lpdaac.usgs.gov/products/modis\_products\_table/modis\_overview</a>

#### **Land Resources Satellites and Sensors**



#### Landsat

- Brief Overview (History and Current Missions)
- Characteristics of Landsat Data
- Where to Obtain Landsat Images

#### MODIS

- Brief Overview
- Characteristics of MODIS data
- Where to Obtain MODIS products

#### Live demonstrations

- LandsatLook Viewer
- MRTWeb





## Landsat



### Landsat: 30 Years of Observations





### **Characteristics of Landsat: Spectral**

- Landsat instruments measure primarily light that is reflected from Earth's surface (with one exception)
- Landsat instruments are designed to detect visible and infrared (near and mid) wavelengths.



Landsat bands of ETM+ (Landsat 7)

Source: NASA Goddard Space Flight Center



## **Characteristics of Landsat 4, 5 and 7**

| Bands                        | Wavelength (micrometers) | Resolution (m)<br>Landsat 4-5 (TM) | Resolution (m)<br>Landsat 7 (ETM+) |
|------------------------------|--------------------------|------------------------------------|------------------------------------|
| Band 1-Blue                  | 0.45-0.52                | 30                                 | 30                                 |
| Band 2 Green                 | 0.52-0.60                | 30                                 | 30                                 |
| Band 3- Red                  | 0.63-0.69                | 30                                 | 30                                 |
| Band 4-Near<br>Infrared      | 0.76-0.90                | 30                                 | 30                                 |
| Band 5- Shortwave Infrared 1 | 1.55-1.75                | 30                                 | 30                                 |
| Band 6- Thermal Infrared     | 10.40-12.50              | 120                                | 60                                 |
| Band 7- Shortwave Infrared 2 | 2.08-2.35                | 30                                 | 30                                 |
| Band 8-Pan                   | 0.52-0.90                |                                    | 15                                 |



### **Characteristics of Landsat 8**

| Bands                       | Wavelength<br>(micrometers) | Spatial Resolution (meters) |
|-----------------------------|-----------------------------|-----------------------------|
| Band 1-Coastal aerosol      | 0.43-0.45                   | 30                          |
| Band 2- Blue                | 0.45-0.51                   | 30                          |
| Band 3- Green               | 0.53-0.59                   | 30                          |
| Band 4- Red                 | 0.64-0.67                   | 30                          |
| Band 5- Near Infrared       | 0.85-0.88                   | 30                          |
| Band 6- SWIR 1              | 1.57-1.65                   | 30                          |
| Band 7- SWIR 2              | 2.11-2.29                   | 30                          |
| Band 8-Panchromatic         | 0.50-0.68                   | 15                          |
| Band 9-Cirrus               | 1.36-1.38                   | 30                          |
| Band 10- Thermal Infrared 1 | 10.60-11.19                 | 100*                        |
| Band 11- Thermal Infrared 2 | 11.50-12.51                 | 100*                        |

<sup>\*</sup> Resampled to 30 meters



### Where to Obtain Landsat Images

#### The LandsatLook Viewer



#### Global Land Cover Facility



#### GloVis



#### Earth Explorer



## Where to Obtain Landsat Images and Products









- Global Land Survey
- Not a data portal, but a global collection of cloud free Landsat images from 1975-2008.
- Time series include (GLS 1975, GLS 1990, GLS 2000, GLS 2005, GLS 2010)
- Acquire GLS datasets through Earth Explorer, GloVis, and GLCF

## MODIS



# MODIS (Moderate Resolution Imaging Spectroradiometer)





- Spatial Resolution
  - □ 250m, 500m, 1km
- Temporal Resolution
  - □ Daily, 8-day, 16-day, monthly, quarterly, yearly
  - 2000-present
- Data Format
  - Hierarchal data format Earth Observing System Format (HDF-EOS)



#### Spectral Coverage

- 36 bands (major bands include Red, Blue, IR, NIR, MIR)
  - Bands 1-2: 250m
  - Bands 3-7: 500m
  - Bands 8-36: 1000m



### **MODIS Tiles vs. Landsat Images**





## **MODIS Naming Convention**

MODIS filenames follow a naming convention which gives useful information regarding the specific product. For Example:



\*\*NOTE: MOD – Terra; MYD – Aqua; MCD - Combined

#### **MODIS Land Products**



| MODIS<br>Name | Product Name Short name                                                         | Spatial<br>Resolution (m) | Temporal           |
|---------------|---------------------------------------------------------------------------------|---------------------------|--------------------|
| MOD 09        | Surface Reflectance                                                             | 500                       | 8-day              |
| MOD 11        | Land Surface Temperature                                                        | 1000                      | Daily, 8-day       |
| MOD 12        | Land Cover/Change                                                               | 500                       | 8-day, Yearly      |
| MOD 13        | Vegetation Indices                                                              | 250-1000                  | 16 day,<br>monthly |
| MOD 14        | Thermal Anomalies/Fire                                                          | 1000                      | Daily, 8-day       |
| MOD 15        | Leaf Area Index/Fraction of Absorbed Photosynthetically Active Radiation (FPAR) | 1000                      | 4-day, 8-day       |
| MOD 16        | Evapotranspiration                                                              |                           |                    |
| MOD 17        | Primary Production                                                              | 1000                      | 8-day, yearly      |
| MOD 43        | Bidirectional reflectance distribution function (BRDF)/Albedo                   | 500-1000                  | 16-day             |
| MOD 44        | Vegetation Continuous Fields                                                    | 250                       | yearly             |
| MOD 45        | Burned Area                                                                     | 500                       | monthly            |

All MODIS Land Products are available at processing Level 3

# Where to Obtain Information on MODIS (and other) NASA Products

- Land Processes Distributed Active Archive (LP DAAC)
  - https://lpdaac.usgs.gov/products/modis\_products\_table
- Earth Observing System Data and Information System (EOSDIS):
  - http://Earthdata.nasa.gov



#### Where to Obtain MODIS Products



- ECHO Reverb
  - http://reverb.echo.nasa.gov
- Data Subsetting and Visualization: Oakridge National Lab DAAC (ORNL DAAC)
  - http://daac.ornl.gov
- GLCF
  - http://www.landcover.org/data/lc
- GLOVIS
  - http://glovis.usgs.gov
- Fire Information for Resource Management System (FIRMS)
  - https://earthdata.nasa.gov/data/near-real-time-data/firms

#### Where to Obtain MODIS Products



- Worldview (Fires, Land Surface Temperature and Snow Cover)
  - □ <a href="https://earthdata.nasa.gov/labs/worldview/">https://earthdata.nasa.gov/labs/worldview/</a>
- Visualization: SERVIR
  - https://www.servirglobal.net/Global/MapsData/ InteractiveMapper.aspx
- MRTWeb
  - □ <a href="http://mrtweb.cr.usgs.gov">http://mrtweb.cr.usgs.gov</a>

## MODIS Reprojection Tool (MRTWeb)

#### MRTWeb enables you to:

visualize

select

mosaic

subset

reproject

reformat

**MODIS** Land products



https://mrtweb.cr.usgs.gov/

We will be giving you a live demonstration of this capability shortly.

## Live Demos

LandsatLook Viewer:

http://landsatlook.usgs.gov/

MRTWeb:

https://lpdaac.usgs.gov/data\_access/mrtweb

## Coming up next week!

Week 3: Habitat Monitoring

## **Important Information**



- One lecture per week every Tuesday May 5 to June 2
  - 12:00 1:00 PM EDT (Session 1)
  - 10:00 11:00 PM EDT (Session 2)
- Webinar recordings, PowerPoint presentations, and homework assignments can be found after each session at:
   <a href="https://arset.gsfc.nasa.gov/ecoforecasting/webinars/introduction-remote-sensing-conservation-management">https://arset.gsfc.nasa.gov/ecoforecasting/webinars/introduction-remote-sensing-conservation-management</a>
- Certificate of Completion
  - Attend 4 out of 5 webinars
  - Assignment 1 and 2 access from the ARSET Conservation Management webinar website (above)
  - You will receive certificates approximately 1 month after the completion of the course from: marines.martins@ssaihq.com
- Q/A: 15 minutes following each lecture and/or by email (<u>cynthia.l.schmidt@nasa.gov</u>)

In July 2014, Landsat 8 captured the isolated island of protected forest around New Zealand's Mt. Taranaki in Egmont National Park surrounded by once-forested pasturelands.

Credit: NASA/USGS.



### Thank You!!

Cindy Schmidt
Cynthia.L.Schmidt@nasa.gov